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In this work, we propose a generative model for enhancement 
of images captured in low-light conditions. Sensor constraints 
and inappropriate lighting conditions are accountable for 
degradations introduced in the image. The degradations limit 
the visibility of the scene and impedes vision in applications 
like detection, tracking and surveillance. Recently, deep 
learning algorithms have taken a leap for enhancement of 
images captured in low-light conditions. However, these 
algorithms fail to capture information on fine grained local 
structures and limit the performance. Towards this, we propose 
a generative model for enhancement of low-lit images to 
exploit both local and global information, and term it as 
LightNet. In proposed architecture LightNet, we include a 
hierarchical generator encompassing encoder-decoder module 
to capture global information and a patch discriminator to 
capture fine grained local information. Typically, the encoder-
decoder module downsamples the low-lit image into distinct 
scales. Learning at distinct scales helps to capture both local 
and global features thereby suppressing the unwanted features 
(noise, blur). With this motivation, we downsample the 
captured low-lit image into 3 distinct scales. The decoder 
upsamples the encoded features at respective scales to generate 
an enhanced image. We demonstrate the results of proposed 
methodology on custom and benchmark datasets in com- 
parison with SOTA methods using appropriate quantitative 
metrics. 

ABSTRACT

•We prepare customised low-light dataset, captured with varying ISOs and Exposures along with corresponding ground-truth 
information to train deep learning algorithms.

•We propose a hierarchical generative model with patch GAN to capture local information explicitly for low-light 
conditions. 

•We propose a combinational loss function to exploit local illuminance keeping global features intact.
•We demonstrate the results of proposed LightNet on NTIRE 2022 [1] challenge dataset and our custom low- light dataset 

using appropriate quality metrics.
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The methodology employs a hierarchical generator with encoder and decoder blocks, encompassing Encoding at Lower-
Scale, Medium-Scale, and Higher-Scale. A novel component, the Modified Residual Dense Block (MRDB), focuses on 
learning local features and fine-grained structural details in Higher-Scale Encoding phase. In the decoding stage, MRDB 
outputs are merged at two levels, Decoding at Medium-Scale and Decoding at Lower-Scale, to produce the enhanced low-
light image. Additionally, a patch-based discriminator is included to capture local color information and contrast information, 
aiding in both local and global color and contrast reconstruction. To optimise the approach, a combinational loss function is 
proposed, enabling the capture of local color, contrast, and content features, thus enhancing the overall image quality. The 
total loss is shown below;
                                                                 Total loss = α ∗ A + β ∗ B + γ ∗ C 
where,
           A = LVGG/i, j, B = Lcolor, C = MS−SSIM. We set the values of α = 0.3, β = 0.4, γ = 0.3 heuristically. 
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